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Summary

A design modification of Rotor 67 is carried out with a full 3D inverse method. The blade

camber surface is modified to produce a prescribed pressure loading distribution, with the blade

tangential thickness distribution and the blade star.king llne at midchord kept the same as the

original Rotor 67 design. Because of the inviscid-flow assumption used in the current version of
the method, Rotor 67 geometry is modified for use at a design point different from the original

design value. A parametric study with the prescribed pressure loading distribution yields the

following results. In the subsonic section, smooth pressure loading shapes generally produce
blades with well-behaved blade surface pressure distributions. In the supersonic section, the

study shows that the strength and position of the passage shock correlate with the characteristics

of the blade pressure loading shape. In general, "smooth" prescribed blade pressure loading

distributions generate blade designs with reverse cambers which have the effect of weakening the
passage shock.



1. Introduction.

Turbomachine blade design systems usuallyemploy a quasi-3D blade design module to gen-

erate the initialblading geometries. This module typicallyconsistsof two steps: a flow selection

step for each blade row and the blade-geometry definitionstep. In the firststep,a throughflow

method with built-inlosscorrelationsis used to selectthe work or flow-angle distribution(i.e.

stagnation enthalpy riseor swirl)for each blade row so as to maximize the efficiencyof the mul-

tistagemachine. This search process is subjected to restrictionsplaced on the diffusionfactor,

blade stagger angle,surge margin, and structuralintegrity.The second step in the quasi-3D blade

design module involvesthe use of familiesof standard profileshapes with correlatedperformance

or 2D/quasi-3D blade-to-bladedesign methods (inverseor optimization techniques) to generate

the blade geometries.

Following closelythe current design practice,we have developed a full3D inverse method

which can readilybe integratedintocurrent blade design systems (Dang & Damle, 1996). In this

proposed "advanced" design system, we envision that the existingthroughflow method would be

retained to selectthe swirl distributionfor each blade row. A 3D inversemethod is then used

to find the blade geometry required to produce the flow conditions selectedby the throughflow

method.

Inverse methods can be formulated with different choices of prescribed quantities. The two

popular choices are (1) the pressure distributions along the blade upper- and lower-surfaces (De-

meulenaere & Van den Braembussche, 1996; Giles & Drela, 1987), and (2) the blade pressure

loading distribution (i.e. the difference in static pressure between the blade upper- and lower-

surfaces), a stacking line (in the 3D case), and the blade thickness distribution (Dang & Damle,

1996; Novak & Haymann-Haber, 1983; Tan et al., 1984). Both approaches have their own ad-

vantages and disadvantages. The main issues of concern are the robustness of these formulations

in 3D (i.e. existence of solution for arbitrary prescribed quantities), and the compatibility of the

method with existing design systems (i.e. relevance between the prescribed flow quantities and

the through.flow solutions, and ease of incorporating structural requirements such as minimum

blade thickness and stacking location into the inverse method).

The primary prescribed quantities in the 3D inverse method of Dang & Damle (1996) are

the blade thickness distribution, the blade pressure loading distribution Ap(r, z), and a stacking

line. The computed geometrical quantity is the 3D blade camber surface. The design strategy

employed in this inverse method is relatively compatible with many blade-generation procedures

employed in industry. In many existing design systems, the blade profiles are generated using

the following systematic geometrical technique. The blade profile at a given spanwise station

is constructed by superimposing a standard profile half-thickness shape (i.e. C4, T4, NACA

0015 base profiles) normal to and on either side of a camber llne (usually a circular arc or a

parabola). The camber leading- and trailing-edge angles are based on the through/tow solutions,

flow-incidence selection, and blade-deviation angle correlations. These 2D blade profiles are then

stacked together along a pre-determined stacking line (usually based on structural requirements)

to form a 3D blade profile.

Using the 3D inverse method of Dang & Damle (1996), as before, the designer would

first select the blade thickness distributions at the computed spanwise stations. Next, instead

of generating the 3D blade camber surface using standard camber surface shapes, the camber

surface is now computed based on a prescribed blade pressure loading distribution and a specified



stacking line. We note that with this 3D inverse method, flow incidence is indirectly specified

through the loading shape (see discussion below), and blade deviation angle is part of the solution.

The shape of the prescribed blade pressure loading Ap (pressure difference between the

blade pressure and suction surfaces) is characterized by the following properties (Fig. 1):

• The pressure loading must vanish at the blade leading- and trailing-edges.

• Flow incidence is imposed by forcing a "large" gradient in Ap near the blade leading-edge

region. We note that with this 3D inverse method, flow incidence is indirectly specified

through the loading shape, and blade deviation angle is part of the solution.

The designer also must specify the magnitude of the prescribed Ap distribution. By considering

the &momentum equation for a control volume coinciding with a streamtube between the blade

leading- and trailing-edges, one can relate Lkp to the tangential mass-averaged angular momentum

per unit mass r_ (Dang, 1995)

/rApdAo - m[(rYs)TE- (rVs)LE] (1)

where rh is the mass flow rate within the streamtube. Consequently, the area under the (rAp)

versus streamwise-distance curve is approximately related to the local overall change in swirl

across a blade row. We note that the right-hand-side of Eq. (1) can be approximated using the

throughflow solutions by assuming that the "blade" streamlines coincide with the meridional grid

lines.

In the inviscid-flow version of the 3D inverse method proposed by Dang & Damle (1996), the

unsteady 3D guler equations are solved using the robust finite-volume time-marching algorithm

of Jameson et al. (1981). During this time-marching process, fluid is allowed to cross the blade

surfaces, and a pressure-jump condition (i.e. the prescribed blade pressure loading Ap) is imposed

across the blade surfaces. The flow-tangency condition along the blade surfaces is then used to

calculate the correct blade geometry via an iteration process. The readers are referred to the

original papers for the details of the method (Dang, 1995; Dang & Damle, 1996; Dang & Isgro,

1995). The computer code employed in this study, called the INV3D code, can run in both the

analysis mode and the inverse mode.

In this report, we use NASA Rotor 67 as a test case to demonstrate this 3D inverse method.

We emphasize that the purpose of this study is not to improve the Rotor 67 design, but simply

to demonstrate the use of the present 3D inverse method to design a fan rotor. This report is

organized as follows. In section 2, we discuss the strategy employed for the redesign of Rotor 67.

In section 3, we present the validation work of the INV3D code. In section 4, we summarize the

design modification study of Rotor 67 using the INV3D code, including a parametric study with

the prescribed loading shape. Finally, concluding remarks are given in section 5.
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2. Redesign Strategy for Rotor 67.

In this study, we use the NASA Rotor 67 geometry documented in Strazisar et al. (1989) as

the test case for the 3D inverse method. As the present version of the method assumes inviscid

flow, the mass flow rate is modified so that the passage shock near the tip region resides in the

blade region (Fig. 5). The mass flow rate employed in this study is 35.6 kg/sec (3% higher than

the original design value). At this mass flow rate, the total pressure ratio predicted by an inviscid

method is 1.81 (10% higher than the original design value). With the blade rotational speed set

at 16,000 RPM, the inlet relative Mach number at the rotor tip is 1.45 (5.1% higher than the

original design value). The number of blades is kept the same at 22 blades.

At the new operating point, we use the 3D inviscid inverse method to modify the original

Rotor 67 design by attempting to (1) minimize adverse pressure gradients on the blade surfaz_s

in the subsonic section of the rotor, and (2) reduce the strength and control the position of the

passage shock in the supersonic section of the blade. The design modification is carried out by

keeping the blade thickness distribution and the stacking line at midchord the same as the original

Rotor 67 design, while the blade pressure loading Ap is modified so as to conserve the area under

the (rAp) versus axial-distance curves at all spanwise locations. This constraint will ensure that

the modified rotor has roughly the same work distribution as the original Rotor 67 design.



3. Consistency Check of INV3D Code

We fast present the validation study of the INV3D code running in the analysis mode

against Adamczyk et al. (1989) analysis code (Euler option). Both codes are used to analyze

the flow through the originalRotor 67 geometry at the new operating point with a mesh sizeof

120 cellsin the axialdirections,32 cellsin the spanwise direction,and 24 cellsin the pitchwise

direction. Figure 2 shows the comparison of the staticpressure distributionsalong the blade

surface at the 25% and 75% spanwise locationsat the design mass flow rate. This figureshows

very good agreement between the two codes running in the analysismode.

Next, we present the validation study of the INV3D code running in the inverse mode.

In this investigation, we attempt to reproduce the original Rotor 67 geometry using the blade

pressure loading Ap computed by the analysis mode of the INV3D code. Figure 3 shows the

comparison of the axial distributions of the blade wrap angle (tangential coordinate of the blade

camber surface) and the blade angle at three spanwise locations between the original Rotor 67

geometry and the blade geometry computed by the INV3D code running in the inverse mode.

This figure shows that the inverse method successfully reproduces the Rotor 67 geometry. Small

discrepancies in the blade angle are found near the blade leading- and trailing-edges, which are

primarily due to the small oscillations in both the input blade pressure loading (calculated using

the analysis mode of the INV3D code) and the flow solutions occurring at these locations. In

particular, as the blade surface velocities are used to trace out the camber surface (Dang & Damle,

1996), dispersion errors in the flow solution will result in oscillations in the blade angle.
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Figure 2: Validation of INV3D code running in analysis mode.
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4. Redesign of Rotor 67

In this section, we present several modifications of Rotor 67 using the 3D inverse method.

Figure 4 (Rotor 67) shows the blade pressure loading contour computed by the INV3D code

(analysis mode) for the original Rotor 67 geometry at the new operating point. The figure shows

two strong discontinuities in the tip region. Examinations of the static pressure contours on

the blade pressure and suction surfaces clearly show that the two discontinuities correspond to

the passage shock (Fig. 5 - Rotor 67). The first discontinuity corresponds to the passage shock

impinging on the blade pressure surface, while the second discontinuity corresponds to the passage

shock impinging on the blade suction surface. This can be seen clearly from the static-pressure

contour plot at the 85% span location shown in Fig. 6. In terms of the quality of this blade

design, Figs. 5 and 6 indicate that the axial position of the passage shock is farther downstream

than desired (a consequence of the inviscid-flow assumption).

The x-y plots shown in Fig. 6 (static pressure and pressure loading Ap) indicate that at the

new operating point, Rotor 67 is front-loaded near the hub with large flow incidence, while the

blade is rear-loaded near the tip with nearly zero incidence. At the 15% span location where the

inflow Mach number is 0.8, the "wavy. ness" in the loading shape near the leadinge-edge region

correlates with the undesirable static-pressure behavior along the blade suction surface. At the

85% span location where the inflow Mach number is 1.32, the locations of the two discontinuities in

the loading shape at the 40% and 95% chord locations coincide exactly with the two discontinuities

in the blade-surface static pressure distributions. They also coincide with the location of the

passage shock shown in the static pressure contour plot in the blade-to-blade plane.

The observations outlined above suggest that a "smooth" blade pressure loading distribution

may correspond to better static pressure distributions on the individual blade surfaces than a

"wavy" one or one with discontinuities. Another concern is the position of the passage shock. At

the design operating point, the desired axial position of the passage shock is inside the blade row.

Figures 5 and 6 indicate that any attempt to improve Rotor 67 for the new operating flow regime

should move the passage shock further upstream. In an attempt to quantify the relationship

between the blade loading shape and the position/strength of the passage shock in the supersonic

section of the blade, we examine four families of loading shapes. We summarize this parametric

study with the following four specific examples. We note that the following inverse calculations are

carried out at approximately the same mass flow rate and overall change in stagnation enthalpy.

Consider the Type D loading shape. The shape is characterized by the presence of two

discontinuities, similar to a "square wave" shape. Figure 7 shows an example of the Type D

loading where the two discontinuities are located at the 20% and 80% chord locations. We note

that the original Rotor 67 geometry is a Type D design in the tip region (for example, at the

85% span location, the two discontinuities are located at the 40% and 95% chord locations). As

expected, the inverse calculation yields a new blade profile which places the passage shock inside

the blade row at roughly the 20% and 80% chord locations! The blade-surface static pressure

contour plots (Fig. 5) clearly show that the passage shock impinges on the blade pressure and

suction surfaces at approximately the 20% and 80% chord locations, respectively. We also observe

that this type of loading is unsuitable in the subsonic section of the blade.

Consider the Type S loading shape. The shape is characterized by a "smooth" curve where

steep gradient is absent. This type of loading is nearly symmetrical about the midchord location.

Shown in Fig. 8 is an example of such loading shape. It is basically the Type D loading shape



shown in Fig. 7, but with the two discontinuities smoothed out. With a Type S loading shape,

we expect that the passage shock present in the previous Type D design will be smeared out

and becomes a "near isentropic" compression-wave system. This is clearly shown in the static

pressure contour plot at the 85% span location (Fig. 8). We note that the compression near the

leading-edge region along the blade pressure surface corresponds to the gradient in the loading

shape between the leading edge and the 20% chord location, while the compression occuring near

the trailing edge along the blade suction surface corresponds to the gradient in the loading shape

between the 80% chord location and the trailing edge. Figure 5 shows that the passage shock

has almost disappeared on both the blade suction and pressure surfaces, except for a very small

region near the tip.

Consider the Type F loading shape. The shape is characterized by a steep gradient near the

blade leading edge and corresponds to a front-loaded design. Figure 9 is an example of the Type

F loading which corresponds to a finite-incidence blade design used in many preliminary design

calculations (Ap ,,, cos[rX/2] where X =_ [z - ZLE]/[ZTE -- ZLE]). Relative to the Type D design,

the discontinuity in the front portion of the Type D loading shape is retained, while the discon-

tinuity in the rear portion has been smoothed out. Consequently, since the first discontinuity

corresponds to the passage shock meeting the blade pressure surface and the second discontinuity

corresponds to the pasage shock meeting the blade suction surface, we expect that the passage

shock remains strong near the blade pressure surface, while it weakens as it impinges on the blade

suction surface. This exact flow pattern occurs when an inverse calculation is performed with a

Type F loading, as can be seen from the static-pressure contour plot at the 85% span location

shown in Fig. 9 and on the blade surfaces shown in Fig. 5. We note that the large discontinuity in

the loading shape at the blade leading edge (i.e. finite incidence design) has pushed the passage

shock forward of the blade, as can be seen by the absence of the shock wave on the blade pressure

surface shown in Fig. 5. We also note that the Type F loading yields well-behaved static pressure

distributions along the blade surfaces in the subsonic section of the blade (Fig. 9).

Consider the Type R loading shape. The shape is characterized by a steep gradient near

the blade trailing edge and corresponds to a rear-loaded design. Figure 10 is an example of the

Type R loading. Relative to the Type D design, the discontinuity in the front portion of the

Type D loading shape is smoothed out, while the discontinuity in the rear portion is retained.

Consequently, we expect that the passage shock weakens as it impinges on the blade pressure

surface, while it remains strong near the blade suction surface. This exact flow pattern occurs

when an inverse calculation is carried out with a Type R loading, as can be seen from the static-

pressure contour plot at the 85% span location shown in Fig. 10 and on the blade surfaces shown

in Fig. 5. A near isentropic compression is observed along the blade pressure surface, while a

shock wave occurs near the trailing edge along the blade suction surface.

Figure I1 shows a comparison of the blade angle distributions, including x-y plots at the

15%, 50%, and 85% span locations. The original Rotor 67 blade geometry is smooth, with the

blade angle decreasing monotonically from the leading- to the trailing-edge values. On the other

hand, the blade geometries generated by the 3D inverse method all have "wavy" distributions.

The most interesting feature is the reverse camber (or negative camber) effect in the supersonic

section of the blades (Prince, 1980; Dang, 1995). We note that the region of reverse camber

coincides with the axial location where the passage shock weakens as it impinges on the blade

suction surface (Type S and Type F loading shapes) or the blade pressure surface (Type R loading

shape). In the Type D case, the discontinuities in the loading shape produce two kinks in the
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bladegeometry. Finally, we note again the presence of oscillations in the blade angle distributions

near the leading- and trailing-edge regions due to the presence of oscillations in the flow solutions.

We also note the rather large differences in the blade angle at the leading- and trailing-edges. This

is due to the fact that these blades are designed with different flow incidence, and the deviation

angle at the blade trailing edge can be different between these designs because of the various

choices of blade loading shapes and the slight difference in radial work distribution.

Based on this parametric study, we present a final blade design which employs different

loading shapes along the blade span. At the hub location, a front-loaded design with finite

incidence is used (Type F loading shown in Fig. 9). This type of loading was shown to yield

well-behaved static pressure distributions along the blade surfaces in the subsonic section of the

blade. At the midspan station, a smooth (Type S) loading shape is used, with allowance for a

small flow incidence. This will ensure that the passage shock in this low supersonic-flow section

of the blade is not detached from the blade leading edge. At the tip location, the same Type S

loading shape with zero incidence shown in Fig. 8 is employed to ensure that the passage shock

is weak and resides inside the blade row. The contour plot of the prescribed blade loading for

the modified design is shown in Fig. 4. The back pressure was adjusted so that the design mass

flow rate is met. By matching the area under the (rAp) versus streamwise-distance curve at

all spanwise locations, the modified design has 1.5% higher change in r_, and the stagnation

pressure ratio is 2.0% higher than the original Rotor 67 design.

Figure 12 gives a comparison of the 3D blade geometries. This figure indicates that the

original Rotor 67 blade and the modified blade are very similar, with the latter appearing to have

more turning in the hub region. In actuality, the original Rotor 67 design is rear-loaded while the

modified design is front-loaded, and this difference results in higher variation in the blade wrap

angle for the modified design than the original design.

Examinations of the 3D solutions show that the flow feature in the subsonic section of the

modified blade is very similar to the Type F results shown in Fig. 9. One interesting new flow

feature is the effect of small flow-incidence imposed in the low supersonic-flow section of the

blade. Figure 13 illustrates a comparison of the flow solutions between Rotor 67 and the modified

design at the 60% span location where the inflow Mach number is 1.13. The figure clearly shows

the small incidence imposed at the blade leading edge, which results in the placement of a weak

shock near the blade leading edge along the blade pressure surface. Figure 14 illustrates a similar

comparison of the flow solutions at the 90% span location where the inflow Mach number is 1.35.

At this span location, the use of the Type S (smooth) loading shape and zero incidence design

condition has weakened the passage shock considerably (as confirmed by inspection of the entropy

plot). On the other hand, the original Rotor 67 blade, which corresponds to the Type D design

in the supersonic section, has a strong passage shock located near the trailing edge.

Finally, we present a consistency check for one of the modified blades. Here, we calculate

the flowfield through the modified blade using the analysis mode of the INV3D code and compare

the solution against that given by the inverse mode. As the modified design is close to the shock-

free condition, the solution is sensitive to small changes in flow conditions. Figure 15 shows the

comparisons of the pressure distributions along the blade surfaces and the axial distribution of

r_ at the 25% and 75%, span locations for the Type F design shown in Fig. 9. These figures

confirm the flow characteristics of the modified blade design presented earlier. We note that in

order to match the solutions given by the inverse and analysis modes, the back pressure had to

10



be slightly adjusted. The two solutions are matched when Pb,_/Pol at the hub is set to 1.080 in

the inverse mode and 1.083 in the analysis mode (0.28% error). The calculated mass flow rate is

35.87 kg/sec for the inverse mode and 36.03 kg/sec for the analysis mode (0.46% error), while the

mass-averaged stagnation pressure ratio is 1.804 for the inverse mode and 1.809 for the analysis

mode (0.28% error).

11
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Figure 6: Rotor 67 - flow solutions at 15% and 85% span locations.

1.o 10 _

-- 0.$ !

1.5, _0

-- _0.0

Figure 7: Type D loading - flow solutions at 15% and 85% span locations.

i °_t_--/ I'.0

"::f/--_lo0i

Y

!,%__/1 '__°_t 1,0!
-0ot/-- li

• _0.0

Figure 8: Type S loading - flow solutions at 15% and 85% span locations.
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Figure 12: Comparison of 3D blade geometry.
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5. Conclusion

A 3D inviscid inverse method is used to redesign NASA Rotor 67 for a frictionless-flow

environment. The redesign is carried out by modifying the prescribed pressure loading shape

such that the radial work distribution and the overall change in r_ across the rotor is preserved.

In this study, we dect to keep the blade thickness distribution and the blade stacking at the

midchord location the same as the original Rotor 67 design.

Based on a parametric study carried out with four distinct families of loading shapes, the

following conclusions can be made. In the subsonic section of the blade, the Type F (front-loaded)

or Type S (smooth and nearly symmetrical) loading shape should be employed, depending on the

requirement of flow incidence at the design point. In the supersonic section of the blade, the

position of the passage shock correlates with the blade loading shape. In general, a shock wave

will appear at the location where the gradient in the loading shape curve is %teep." For example,

a "square wave" (Type D) loading shape will result in a strong passage shock, and the location of

the passage shock coincides with the the two discontinuities in the square wave. On the other hand,

front-loaded (Type F) and rear-loaded (Type R) blade designs place one end of the passage shock

near the blade leading- and trailing-edges, respectively, while the other end weakens significantly

as it impinges on the neighboring blade. The weakening of the passage shock is achieved through

reverse cambering. When incidence is imposed, the discontinuity in the loading shape at the

blade leading edge pushes the passage shock upstream of the blade passage.

Because of the inviscid-flow assumption employed in this study, this work is regarded as

a stepping-stone towards a practical design method, and no attempt was made at evaluating

the goodness of the modified blades at the off-design conditions. We plan to carry out a similar

redesign study of Rotor 67 at the actual operating point (including an off-design evaluation study)

when the viscous version of the inverse method is available.
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